skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ye, Jianbo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. gsplat is an open-source library designed for training and developing Gaussian Splat- ting methods. It features a front-end with Python bindings compatible with the Py- Torch library and a back-end with highly optimized CUDA kernels. gsplat o↵ers nu- merous features that enhance the optimization of Gaussian Splatting models, which in- clude optimization improvements for speed, memory, and convergence times. Experimen- tal results demonstrate that gsplat achieves up to 10% less training time and 4⇥ less memory than the original Kerbl et al. (2023) implementation. Utilized in several re- search projects, gsplat is actively maintained on GitHub. Source code is available at https://github.com/nerfstudio-project/gsplat under Apache License 2.0. We wel- come contributions from the open-source community. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  2. Abstract One key challenge encountered in single-cell data clustering is to combine clustering results of data sets acquired from multiple sources. We propose to represent the clustering result of each data set by a Gaussian mixture model (GMM) and produce an integrated result based on the notion of Wasserstein barycenter. However, the precise barycenter of GMMs, a distribution on the same sample space, is computationally infeasible to solve. Importantly, the barycenter of GMMs may not be a GMM containing a reasonable number of components. We thus propose to use the minimized aggregated Wasserstein (MAW) distance to approximate the Wasserstein metric and develop a new algorithm for computing the barycenter of GMMs under MAW. Recent theoretical advances further justify using the MAW distance as an approximation for the Wasserstein metric between GMMs. We also prove that the MAW barycenter of GMMs has the same expectation as the Wasserstein barycenter. Our proposed algorithm for clustering integration scales well with the data dimension and the number of mixture components, with complexity independent of data size. We demonstrate that the new method achieves better clustering results on several single-cell RNA-seq data sets than some other popular methods. 
    more » « less